21AID15	ROBOTICS AND INTELLIGENT SYSTEMS	L	Т	Р	С
		3	0	0	3
Course Objectives • To understand the basic concepts associated with the design, functioning, applications and social aspects of robots • To study about the electrical drive systems and sensors used in robotics for various applications • To learn about analyzing robot kinematics, dynamics through different methodologies and study various design aspects of robot arm manipulator and end-effector • To learn about various motion planning techniques and the associated control architecture • To understand the implications of AI and other trending concepts of robotics UNIT I FOUNDATION FOR BEGINNERS 9 Hours Introduction brief history, definition, anatomy, types, classification, specification and need based applications; role and need of robots for the immediate problems of the society, future of mankind and automation-ethical issues; industrial scenario local and global, case studies on					and are
UNIT II	t research platform and industrial serial arm manipulator. BUILDING BLOCKS OF A ROBOT		9 F	lours	<u>.</u>
direction control and circuitry, Selection criterion for actuators, direct drives, non-traditional actuators; Sensors for localization, navigation, obstacle avoidance and path planning in known and unknown environments – optical, inertial, thermal, chemical, biosensor, other common sensors; Case study on choice of sensors and actuators for maze solving robot and self driving cars					
UNIT III	KINEMATICS, DYNAMICS AND DESIGN OF ROBOTS & END-EFFECTORS		9 H	lours	5
Robot kinematics - Geometric approach for 2R, 3R manipulators, homogenous transformation using D-H representation, kinematics of WMR, Lagrangian formulation for 2R robot dynamics; Mechanical design aspects of a 2R manipulator, WMR; End-effector - common types and design case study.					
UNIT IV	NAVIGATION, PATH PLANNING AND CONTROL ARCHITECTURE		9 H	lours	5
Mapping & Navigation – SLAM, Path planning for serial manipulators; types of control architectures - Cartesian control, Force control and hybrid position/force control, Behaviour based control, application of Neural network, fuzzy logic, optimization algorithms for navigation problems, programming methodologies of a robot					
UNIT V	AI AND OTHER RESEARCH TRENDS IN ROBOTICS		9 H	lours	5
Application of Machine learning - AI, Expert systems; Tele-robotics and Virtual Reality, Micro & Nanorobots, Unmanned vehicles, Cognitive robotics, Evolutionary robotics, Humanoids					
UNIT IV	CASE STUDIES				
Case studies					

Course Outcomes:

Explain the concepts of industrial robots in terms of classification, specifications and coordinate systems, along with the need and application of robots & automation
Examine different sensors and actuators for applications like maze solving and self driving cars.

• Design a 2R robot & an end-effector and solve the kinematics and dynamics of motion for robots.

• Explain navigation and path planning techniques along with the control architectures adopted for robot motion planning.

• Describe the impact and progress in AI and other research trends in the field of robotics

Text books:

1. Saeed. B. Niku, Introduction to Robotics, Analysis, system, Applications, Pearson educations, 2002

2. Roland Siegwart, Illah Reza Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2011

Reference Books:

1. Richard David Klafter, Thomas A. Chmielewski, Michael Negin, Robotic engineering: an integrated approach, Prentice Hall, 1989

2. Craig, J. J., Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley, 1989.

3. K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.

4. Wesley E Snyder R, Industrial Robots, Computer Interfacing and Control, Prentice Hall International Edition, 1988.

5. Robin Murphy, Introduction to AI Robotics, MIT Press, 2000

6. Ronald C. Arkin, Behavior-based Robotics, MIT Press, 1998

7. N. P. Padhy, Artificial Intelligence and Intelligent Systems, Oxford University Press, 2005

8. Stefano Nolfi, Dario Floreano, Evolutionary Robotics – The Biology, Intelligence and Technology of Self–Organizing Machines (Intelligent Robotics and Autonomous Agents series), MIT Press, 2004.